Certain subclasses of Spiral-like univalent functions related with Pascal distribution series

نویسندگان

چکیده

Abstract The purpose of the present paper is to find sufficient conditions for subclasses analytic functions associated with Pascal distribution be in spiral-like univalent and inclusion relations such open unit disk

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A certain convolution approach for subclasses of univalent harmonic functions

In the present paper we study convolution properties for subclasses of univalent harmonic functions in the open unit disc and obtain some basic properties such as coefficient characterization and extreme points.  

متن کامل

Stability for certain subclasses of harmonic univalent functions

In this paper, the problem of stability for certain subclasses of harmonic univalent functions is investigated. Some lower bounds for the radius of stability of these subclasses are found.

متن کامل

Certain subclasses of bi-univalent functions associated with the Aghalary-Ebadian-Wang operator

In this paper, we introduce and investigate two new subclasses of the functions class $ Sigma $ of bi-univalent functions defined in the open unit disk, which are associated with the Aghalary-Ebadian-Wang operator. We  estimate the coefficients $|a_{2} |$ and  $|a_{3} |$ for functions in these new subclasses. Several  consequences of the result are also pointed out.

متن کامل

Certain Subclasses of Bi–univalent Functions Satisfying Subordinate Conditions

In this paper, we introduce and investigate each of the following subclasses: SΣ(λ ,γ ;φ), H S Σ(α), RΣ(η ,γ ;φ) and BΣ(μ ;φ) (0 λ 1; γ ∈ C {0}; α ∈ C; 0 η < 1; μ 0) of bi-univalent functions, φ is an analytic function with positive real part in the unit disk D, satisfying φ(0) = 1, φ ′(0) > 0, and φ(D) is symmetric with respect to the real axis. We obtain coefficient bounds involving the Taylo...

متن کامل

On Certain Subclasses of Univalent Functions and Radius Properties

Denote by A the class of all functions f , normalized by f(0) = f ′(0) − 1 = 0, that are analytic in the unit disk ∆ = {z ∈ C : |z| < 1}, and by S the subclass of univalent functions in ∆. Denote by S∗ the subclass consisting of functions f in S that are starlike (with respect to origin), i.e., tw ∈ f(∆) whenever t ∈ [0, 1] and w ∈ f(∆). Analytically, f ∈ S∗ if and only if Re (zf ′(z)/f(z)) > 0...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Moroccan Journal of pure and applied analysis

سال: 2021

ISSN: ['2351-8227']

DOI: https://doi.org/10.2478/mjpaa-2021-0020